亚洲av高清一区三区三区,日韩精品人妻无码久久久,伊人网在线视频观看91,国产不卡的丝袜综合在线

Welcome to Shenzhen Zhongyuan Plastic Co., Ltd!

News



Tel:(0755)27151698
Fax:(0755)27150611
Mailbox:szzyzcl@163.com / szzy@szzy99.com
Add:Building A1 and A2, No.1 Industrial Zone, yuliu property company, Gongming town, Bao'an District, Shenzhen
Industry information

當(dāng)前位置:

首頁(yè) News Industry information

Application of conductive plastic shell in electromagnetic shielding of communication equipment

Release time:2021-10-08

With the development of communication technology, the integration of equipment is getting higher and higher, and the electromagnetic compatibility inside the system is also upgraded accordingly. In order to solve the problem of electromagnetic radiation leakage and interference, electromagnetic shielding materials are generally used for shielding. The upgrading of 5g base station core technology and the increase in the number of base stations have led to a substantial increase in the demand for electromagnetic shielding materials. At present, the widely used electromagnetic shielding devices include conductive plastic devices, conductive silica gel, metal shielding devices, conductive cloth pads, microwave absorbing devices, etc.


1、 Electromagnetic shielding principle

The principle of electromagnetic shielding is to reflect and absorb the electromagnetic wave from the interference source. Generally speaking, the material reflects and guides the electromagnetic energy flow, and internally generates the current and magnetic polarization field opposite to the source electromagnetic field, thereby weakening the radiation effect of the source electromagnetic field, which is closely related to the charge, current and polarization induced on the surface of the shielding structure and inside the shielding body.

Generally, the materials used for electromagnetic shielding have certain conductivity. In our impression, plastic is generally used as insulating material. How can conductive plastic be used for electromagnetic shielding? Let's have a brief look first.


2、 Introduction to conductive plastics

In fact, if plastic is processed to a certain extent, such as forming a composite system with island structure between plastic matrix and conductive filler, electrons can have the ability of particle to particle transition with the help of quantum mechanical tunneling effect, so as to improve the conductivity of plastic and become a "semiconductor" conductive plastic.

Generally speaking, the resistance of materials to current is characterized by surface resistivity. The smaller the surface resistivity, the stronger the conductivity. According to the different surface resistivity of materials, plastics can be divided into:

1. Insulation material: 10^12 ~ 10^15 ohm/sq

2. Antistatic material: 10^10 ~ 10^12 ohm/sq

3. Electrostatic dissipative material: 10^6 ~ 10^12 ohm/sq

4. Conductive material: ≤ 10^5 ohm/sq

5. Electromagnetic shielding material: 10^1 ~ 10^3 ohm/sq

Among them, conductive plastics with surface resistance less than or equal to 10^5 ohm/sq are conductive plastics, while conductive plastics with surface resistance between 10^1 and 10^3 ohm/s can generally be used as electromagnetic shielding materials. It has high conductivity, has certain absorption loss to electromagnetic wave, and can weaken the radiation effect of electromagnetic field. It is an important choice of electromagnetic shielding materials.


3、 Classification of conductive plastics

Conductive plastics are divided into two categories, among which conductive plastics made by physical methods are called composite conductive plastics, and conductive plastics made by chemical methods are called intrinsic (also known as structural) conductive plastics.

1、Intrinsic conductive plastic

It refers to the polymer itself or the plastic with conductivity after chemical modification, which can play the role of its own chemical structure to make it intrinsically conductive, and then increase its conductivity through chemical doping.

2、Composite conductive plastic

It refers to plastic with conductivity after physical modification, which is generally made by mixing conductive substances such as carbon black, carbon fiber, graphite, metal powder and metal fiber into the resin. At present, 90% of conductive plastics are composite materials, which are widely used.

Choosing different plastic substrates and combining different proportions of conductive materials will bring different electromagnetic shielding properties. As a shielding material, conductive plastic can adjust the shielding efficiency according to the thickness of the product, and its shielding efficiency is between 30~90db.


4、 Production technology of conductive plastics

Pc/abs, PC, ABS, PA, PPE and other resins are combined with nickel plated carbon fiber, stainless steel fiber and other conductive substances. Through the mixing of plastic and filler, through the plastic processing process, the conductivity is improved to a certain extent, and the great changes from insulator to semiconductor and then to conductor are realized, so that it has EMI shielding function and grounding function.

The conductive plastic adopts the injection molding process, which is one-time molding without complex secondary processes such as machining, electroplating, painting, coating, etc., which is conducive to greatly reducing the processing cost, and more complex structures can be achieved through injection molding. The density of conductive plastic (1.2~1.4g/cm3) is one quarter of that of common metals, even compared with aluminum, it is only half of that of aluminum. It can be processed into a thin-walled structure of about 1.0 mm, and the weight is reduced by 75%.


5、 Introduction to the application of conductive plastics

Conductive plastic has good electromagnetic shielding performance, low density, good toughness, low cost, easy processing, adjustable shielding performance and other advantages. It is a potential substitute for metal shielding materials. Conductive plastics are mainly used for EMI shielding shells in integrated circuits, automotive electronics, electrical and other fields, as well as semiconductor shielding materials used in medium and high voltage cables. They can maintain the inherent characteristics of plastics and have properties similar to metal conductivity.

1、Suspension structure of communication base station

The density of conductive plastics (1.2~1.4g/cm3) is one quarter of that of ordinary metals, and even compared with aluminum, it is only half of that of steel. Because of its low density, conductive plastic has certain application advantages in the suspension structure of the transmission tower of the communication base station. In addition, it is also a good substitute for the metal die-casting shell.

2、Power cover

At present, the power cover plate of the power supply system on the communication equipment mainly adopts aluminum die casting, but the main problems of the aluminum die casting are: heavy quality, high cost, difficult to process, non adjustable shielding efficiency, etc. Using conductive plastics instead of metal materials can avoid these problems and meet higher market demand.

3、Shielding cavity

At present, aluminum alloy die castings are mostly used in the shielding cavity of communication equipment, but the die castings have high density, easy corrosion, poor formability, and are plated with ordinary plastics. The coating is easy to fall off during long-term use, making the product function invalid; The conductive plastic integration scheme is adopted, which is convenient for assembly, good product reliability, shielding performance can meet the requirements, and the cost is also reduced.


The applications of conductive plastics in EMI also include communication false panels, connectors (optical fiber sheath, power sheath, etc.), computer display back shells, light guide boxes, and military materials.

Copyright: Shenzhen Zhongyuan Plastic Co., Ltd. | mold processing customized manufacturer. If you want to know the processing price of the factory, how much is it, and which is good, please contact us Yue ICP Bei No. 17060480
久久精品99国产精品日本| 中文在线观看播放理论片| 啊啊啊啊啊网址在线观看| 国产国产精品人在线视| 公与3个熄乱理在线播放| 中文字幕乱码亚洲中在线| 一级片免费无码手机观看| 久久久久久久久久免观看| 亚洲男人天堂a| 日韩精品内射视频免费观看| 水菜丽成人av在线亚洲| 亚洲无码123| 亚洲日韩欧美一区久久久久我| 男女午夜视频在线观看免费| 狼群社区www在线中文| 日韩高清在线视频一区二区| 久久se精品一区二区国产| 2020亚洲欧美日韩在线| 神午夜久久亚洲精品电影闲| 亚洲av无码乱码国产精品久久| 国产欧美成人精品第二区| 人妻少妇精品专区性色av| 国产免费AV片无码永久免费| 国产日韩中文字幕在线播放| 大香蕉手机在线免费视频| 久久青青草原精品首页99| 久久99re2在线播放| 久久久一级视频| 欧美日韩中文一区二区不卡| 亚洲精品一区二区三区中文字幕 | 午夜免费福利88888| 国产爆乳无码一区二区麻豆| 亚洲精品久久yy5099| 小泽玛利亚家庭教师在线| 久久久乱码精品亚洲日韩| 日韩精品中文字幕在线99| bb好痒好想被在线观看| 一区二区三区久久久一区| 中文字幕乱码无码人妻系列蜜桃| 亚洲狠狠爱一区二区三区| 日本特黄大片一区二区三区|